Alameda CTC - RSEP

Berkeley IS/MND

WATER QUALITY AND DRAINAGE MEMO FEBRUARY 21, 2023 | DRAFT

Prepared By:

Contents

Executive Summary	3
1.0 Project Setting and Existing Conditions	4
1.1 Project Location and Description	4
1.2 Location Data	4
1.3 Existing Site Features	4
1.4 Existing Soil and Groundwater	4
2.0 Post-Construction Stormwater	5
2.1 Ground Cover Comparison	5
2.2 Pollutants of Concern	5
2.3 Water Quality Management	7
2.4 Hydromodification Management	7
2.5 Applicable BMP's	8
3.0 References.	8
Appendix	9
Tables	
Table 1. Location Data	4
Table 2. Existing Conditions	4
Table 3. Summary of Soil Data	5
Table 4. Summary of Ground Cover	5
Table 5. Potential Pollutants of Concern	5
Table 6. Receiving Water Body Pollutant Impacts	7
Table 7. Summary of Post Construction Stormwater Quality Requirements	7

EXECUTIVE SUMMARY

This drainage memo has been prepared to analyze the drainage conditions for each crossing with respect to water quality requirements and peak runoff impacts. Based upon the location of the projects, the disturbed area for construction, and the governing agency requirements we have noted the following requirements to be addressed by each location:

- The project does not violate water quality standards or waste discharge requirements
- The project does not substantially degrade surface or groundwater quality
- The project does not interfere or impede groundwater recharge or management
- The project does not alter the existing drainage pattern
- The project does not result in substantial erosion or siltation
- The project does not substantially increase the rate or amount of surface runoff
- The project does not create or contribute runoff water which would exceed the capacity of existing
 or planned stormwater drainage systems, or provide substantial additional sources of polluted
 runoff
- The project does not impede or redirect flood flows
- The project is located within a tsunami zone
- The project does not conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan

Each crossing project is subject to the following requirements and recommendations:

- A. Conformance with Alameda County Stormwater Quality Best Managements Practices (BMPs) for source control measures
- B. Existing and Proposed Drainage inlets to be marked "No Dumping Drains to Bay" within project limits
- C. Stormwater quality treatment measures are not required based upon the proposed construction
- D. No improvements to the drainage conveyance system (inlets and underground pipe) are required based upon the proposed construction

1.0 PROJECT SETTING AND EXISTING CONDITIONS

1.1 PROJECT LOCATION AND DESCRIPTION

The project site consists of three existing at-grade rail crossings in the City of Berkeley, in Alameda County, California. Crossings are in the western portion of Berkeley in predominantly business, commercial, and light industrial areas. Alameda County Transportation Commission (Alameda CTC) is the lead agency under the California Environmental Quality Act (CEQA). The crossings are along Union Pacific Railroad (UPRR) tracks where UPRR tracks intersect with local streets. Each of the crossings is listed from north to south in **Table 1** below, noting the local street intersections. The Map ID number corresponds to crossing locations shown on **Figure 1**. Detailed drawings of each crossing are attached.

1.2 LOCATION DATA

Table 1. Location Data

Jurisdiction	Intersection	Map ID
Berkeley	Virginia Street	1
Berkeley	Hearst Street	2

1.3 EXISTING SITE FEATURES

Table 2. Existing Conditions

Intersection	Description
Virginia Street	Two-lane side street with a single-arm railroad gate (one in each direction) with lights and street painting. Developed area with little pervious surface except gravel shoulder of UPRR tracks
Hearst Avenue	Two-lane side street with a single-arm railroad gate (one in each direction) with lights and street painting. Developed area with little pervious surface except gravel shoulder of UPRR tracks

Source: Circlepoint, 2021

1.4 EXISTING SOIL AND GROUNDWATER

Existing soil data was obtained from the National Resource Conservation Service (NRCS) Web Soil Survey Groundwater depth data was obtained from EnviroStor, the Department of Toxic Substances Control's (DTSC) online data management system, and GeoTracker, the California State Water Resources Control Board's data management system (Appendix C, D).

Table 3. Summary of Soil Data

Intersection NRCS Soil Classification		Groundwater Depth		
Virginia Street	146 – Urban Land	5-ft bgs		
Hearst Street	146 – Urban Land	5-ft bgs		

2.0 POST-CONSTRUCTION STORMWATER

2.1 GROUND COVER COMPARISON

The volume and rate of stormwater runoff is directly related to groundcover. By directly comparing the change in impervious ground cover the potential hydrologic impact can be assessed. For each project location the increase in impervious area poses no impact as an increase in up to 1,500sf equates to a 0.1cfs increase for a ten-year storm event. A comparison of pre-project to post-project conditions is summarized in Table 4 below.

Table 4. Summary of Ground Cover

		Existing C	Condition	Proposed		
Location	Project Area (sf)	Impervious Area (sf)	Impervious (%)	Impervious Area (sf)	Impervious (%)	Impervious Area Increase (sf)
Virginia Street	5,461	2,793	51%	4,545	83%	1,752
Hearst Ave	6,387	3,671	57%	5791	90%	2,120

2.2 POLLUTANTS OF CONCERN

Stormwater run-off naturally contains various constituents, however development and operational activities within developed areas typically increase contaminant concentrations to levels that impact water quality. In addition, development can increase run-off generation from a site by increasing the amount of impervious surfaces. The additional run-off can have detrimental effects on streams and rivers in the form of erosion and sedimentation which can harm water quality and wildlife habitat. Table 5 lists typical pollutants of concern from developed sites.

Table 5. Potential Pollutants of Concern

Pollutant	Impacts on Water Quality
Sediment	Sediment is a common component of stormwater, and can be a pollutant. Sediment can be detrimental to aquatic life (primary producers, benthic invertebrates, and fish) by interfering

	with photosynthesis, respiration, growth, reproduction, and oxygen exchange in water bodies.
	Sediment can transport other pollutants that are attached to it including nutrients, trace
	metals, and hydrocarbons. Sediment is the primary component of total suspended solids
	(TSS), a common water quality analytical parameter.
Nutrients	Nutrients including nitrogen and phosphorous are the major plant nutrients used for
	fertilizing landscapes, and are often found in stormwater. These nutrients can result in
	excessive or accelerated growth of vegetation, such as algae, resulting in impaired use of water in lakes and other sources of water supply. For example, nutrients have led to a loss of water
	clarity in Lake Tahoe. In addition, un-ionized ammonia (one of the nitrogen forms) can be
	toxic to fish.
Bacteria and Viruses	Bacteria and viruses are common contaminants of stormwater. For separate storm drain
	systems, sources of these contaminants include animal excrement and sanitary sewer
	overflow. High levels of indicator bacteria in stormwater have led to the closure of beaches,
	lakes, and rivers to contact recreation such as swimming.
Oil and Grease	Oil and grease includes a wide array of hydrocarbon compounds, some of which are toxic to
	aquatic organisms at low concentrations. Sources of oil and grease include leakage, spills,
	cleaning and sloughing associated with vehicle and equipment engines and suspensions,
Matala	leaking and breaks in hydraulic systems, restaurants, and waste oil disposal.
Metals	Metals including lead, zinc, cadmium, copper, chromium, and nickel are commonly found in stormwater. Many of the artificial surfaces of the urban environment (e.g., galvanized metal,
	paint, automobiles, or preserved wood) contain metals, which enter stormwater as the surfaces
	corrode, flake, dissolve, decay, or leach. Over half the trace metal load carried in stormwater is
	associated with sediments. Metals are of concern because they are toxic to aquatic organisms,
	can bioaccumulate (accumulate to toxic levels in aquatic animals such as fish), and have the
	potential to contaminate drinking water supplies.
Organics	Organics may be found in stormwater in low concentrations. Often synthetic organic
	compounds (adhesives, cleaners, sealants, solvents, etc.) are widely applied and may be
	improperly stored and disposed. In addition, deliberate dumping of these chemicals into
	storm drains and inlets causes environmental harm to waterways.
Pesticides	Pesticides (including herbicides, fungicides, rodenticides, and insecticides) have been
	repeatedly detected in stormwater at toxic levels, even when pesticides have been applied in accordance with label instructions. As pesticide use has increased, so too have concerns about
	adverse effects of pesticides on the environment and human health. Accumulation of these
	compounds in simple aquatic organisms, such as plankton, provides an avenue for
	biomagnification through the food web, potentially resulting in elevated levels of toxins in
	organisms that feed on them, such as fish and birds.
Gross Pollutants	Gross Pollutants (trash, debris, and floatables) may include heavy metals, pesticides, and
	bacteria in stormwater. Typically resulting from an urban environment, industrial sites and
	construction sites, trash and floatables may create an aesthetic "eye sore" in waterways. Gross
	pollutants also include plant debris (such as leaves and lawn-clippings from landscape
	maintenance), animal excrement, street litter, and other organic matter. Such substances may
	harbor bacteria, viruses, vectors, and depress the dissolved oxygen levels in streams, lakes, and
Vestor Dreduction	estuaries sometimes causing fish kills.
Vector Production	Vector production (e.g., mosquitoes, flies, and rodents) is frequently associated with sheltered
	habitats and standing water. Unless designed and maintained properly, standing water may occur in treatment control BMPs for 72 hours or more, thus providing a source for vector
	habitat and reproduction.

Source: CASQA BMP Handbook, 2003

Table 6. Receiving Water Body Pollutant Impacts

Intersection Receiving Water Body		Pollutant Impacts
Virginia Street	School House Creek	None
Hearst Street	School House Creek	None

2.3 WATER QUALITY MANAGEMENT

The post-construction water quality is governed by the Alameda County Stormwater Control guidelines, established by Regional Water Quality Board Provision C3.i. Per the July 1-2023 regulation updates, any project that create or replace 5,000sf or more impervious area is considered a Regulated Project. The proposed rail crossings that fall into the classification of a Regulated Project are required to provide stormwater treatment for the project area. Stormwater treatment facilities that are accepted by Alameda County include:

- 1. Bioretention Facilities
- 2. Infiltration Trenches
- 3. Infiltration Drywells

These guidelines define small projects as those which create or replace at least 2,500sf but less than 5,000sf of impervious surface. The proposed rail crossings that fall into the classification of a small site are required to implement one of the following Best Management Practices (BMPs):

- 1. Direct runoff from sidewalks and walkways onto vegetated areas
- 2. Direct runoff from driveways onto vegetated areas
- 3. Construct sidewalks and walkways with permeable surfaces.
- 4. Construct bike lanes and driveways with permeable surfaces

 Table 7.
 Summary of Post Construction Stormwater Quality Requirements

Intersection	Disturbed Area (sf) Proposed Imperio Surface (sq-ft)		Post-Construction Stormwater Quality Requirements
Virginia Street	5,461	4,545	Implement one of the small site design measures
Hearst Street	6,387	5,791	Implement one of the stormwater treatment options

2.4 HYDROMODIFICATION MANAGEMENT

Hydromodification is the change in the timing, peak discharge, and volume of run-off from a site due to land development. When a site is developed, the impervious surfaces no longer allow rainwater to infiltrate into the native soils, which then becomes run-off. The additional run-off can add to the erosive level of flows in creeks and rivers.

These sites are each disturbing less than an acre of land. Therefore, no additional hydromodification management is necessary.

2.5 APPLICABLE BMP'S

Design Engineer should consider implementing the following BMP's during construction:

- EC-1 Scheduling
- NS-3 Paving and Grinding Operations
- NS-8 Vehicle and Equipment Cleaning
- NS-9 Vehicle and Equipment Fueling
- NS-10 Vehicle and Equipment Maintenance
- NS-12 Concrete Curing
- NS-13 Concrete Finishing
- SE-1 Silt Fence
- SE-5 Fiber Rolls
- SE-7 Street Sweeping and Vacuuming
- SE-8 Sandbag Barrier
- SE-10 Storm Drain Inlet Protection
- WE-1 Wind Erosion Control
- WM-1 Material Delivery and Storage
- WM-2 Material Use
- WM-3 Stockpile Management
- WM-4 Spill Prevention and Control
- WM-5 Solid Waste Management
- WM-8 Concrete Waste Management

3.0 REFERENCES

Alameda County Hydrology & Hydraulics (2018). *Alameda County Flood Control & Water Conservation District*. Available online at: https://acfloodcontrol.org/the-work-we-do/the-work-we-do-hydrology-manual/

C.3 Stormwater Technical Guidance (2017). *Alameda County Clean Water Program.* Available online at: https://www.cleanwaterprogram.org/images/uploads/C3 Technical Guidance v6 Oct 2017 FINAL Erra ta updated 04.20.18.pdf

CASQA (2003). Construction BMP Handbook. Available online at: www.casqa.org

CEQA Guidelines Appendices (2021). Association of Environmental Professionals.

Stormwater Requirements Checklist (2016). *City of Berkeley Public Works Department*. Available online at: https://www.cityofberkeley.info/uploadedFiles/Online Service Center/Planning/Stormwater Requirements_Checklist_C.3.i%20Pojects.pdf

FRA Categorical Exclusion Companion Guide (2019). *U.S. Department of Transportation Federal Railroad Administration*. Available online at: https://railroads.dot.gov/elibrary/fra-categorical-exclusion-companion-guide

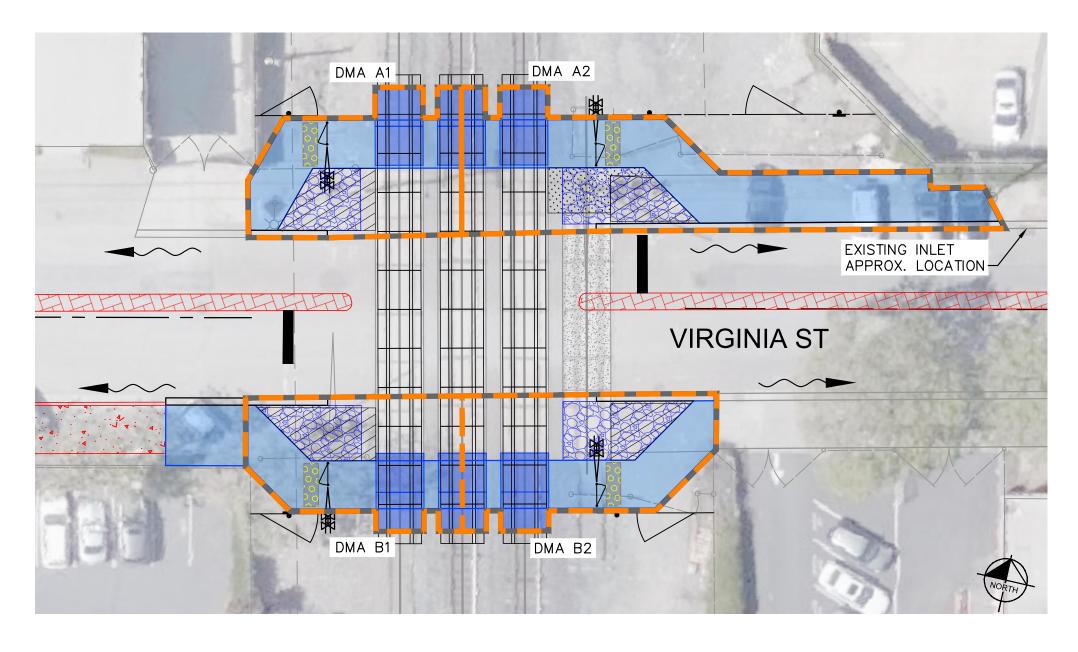
EnviroStor (2021). Department of Toxic Substances Control. Available at: https://dtsc.ca.gov/your-envirostor/

GeoTracker (2021). California State Water Resources Control Board. Available at: https://geotracker.waterboards.ca.gov/

APPENDIX

Attachment A – Drainage Exhibits

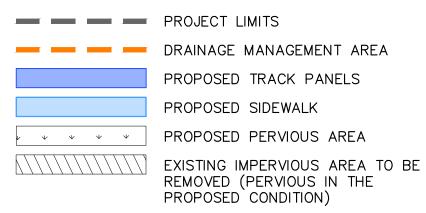
Attachment B – Wetland and Habitat Mapper

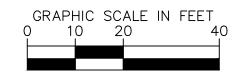

Attachment C – FEMA Firmette Maps

Attachment D – Web Soil Survey Maps

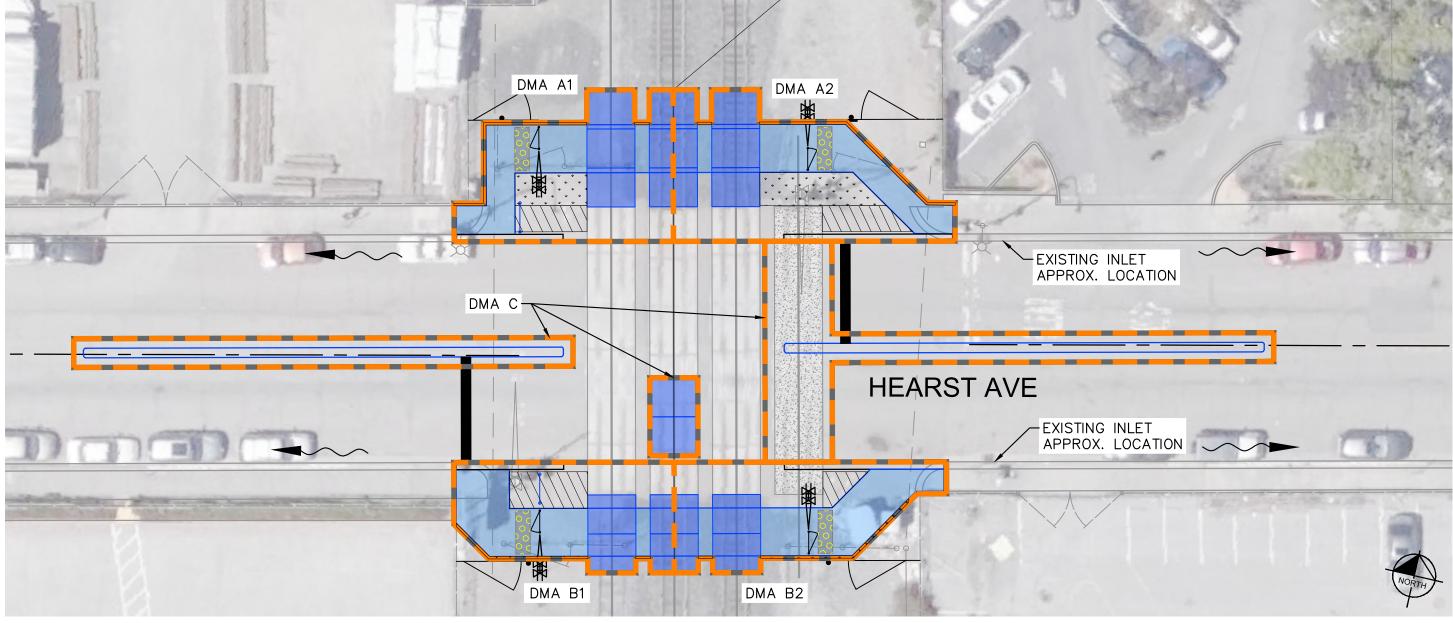
Attachment E – Groundwater Data

Attachment F – Tsunami Hazard Zone Map

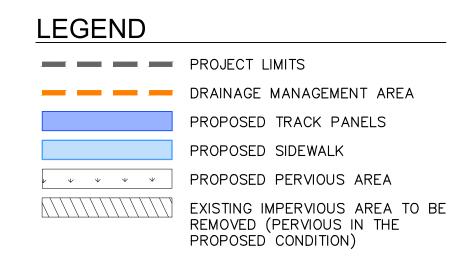

ATTACHMENT A – DRAINAGE EXHIBITS

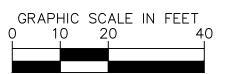

		EXISTING CONDITIONS			PROPOSED CONDITIONS			
DRAINAGE MGMT AREA ID	DISTURBED AREA (SF)	PERVIOUS AREA (SF)	IMPERVIOUS AREA (SF)	PERCENT IMPERVIOUS (%)	PERVIOUS AREA (SF)	IMPERVIOUS AREA (SF)	PERCENT IMPERVIOUS (%)	
A1	1,148	635	513	45%	233	915	80%	
A2	1,955	892	1,063	54%	306	1,649	84%	
B1	1,094	522	573	52%	227	867	79%	
B2	1,264	619	645	51%	149	1,115	88%	
TOTAL	5,461	2,668	2,793	51%	916	4,545	83%	

DRAINAGE EXHIBIT: LOCATION 1 - BERKELEY - VIRGINIA


LEGEND		L	Ε	G	Ε	N	D
--------	--	---	---	---	---	---	---

FLOW DIRECTION





		EXISTING CONDITIONS			PROPOSED CONDITIONS		
DRAINAGE MGMT AREA ID	DISTURBED AREA (SF)	PERVIOUS AREA (SF)	IMPERVIOUS AREA (SF)	PERCENT IMPERVIOUS (%)	PERVIOUS AREA (SF)	IMPERVIOUS AREA (SF)	PERCENT IMPERVIOUS (%)
A1	1,132	790	342	30%	184	948	84%
A2	1,322	887	435	33%	246	1076	81%
B1	940	562	379	40%	124	816	86%
B2	1,010	477	533	53%	42	968	96%
С	1,983	0	1,983	100%	0	1983	100%
TOTAL	6,387	2,716	3,671	57%	596	5791	90%

DRAINAGE EXHIBIT: LOCATION 2 - BERKELEY - HEARST

FLOW DIRECTION

ATTACHMENT B – WETLAND AND HABITAT MAPPER

PISH A WIDLIPE SHIPKE U.S.

U.S. Fish and Wildlife Service

National Wetlands Inventory

BERKELEY - VIRGINIA ST

March 3, 2021

Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Freshwater Pond

Lake

Lano

Other

Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

U.S. Fish and Wildlife Service

National Wetlands Inventory

BERKELEY - HEARST AVE

March 3, 2021

Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Freshwater Pond

Lake

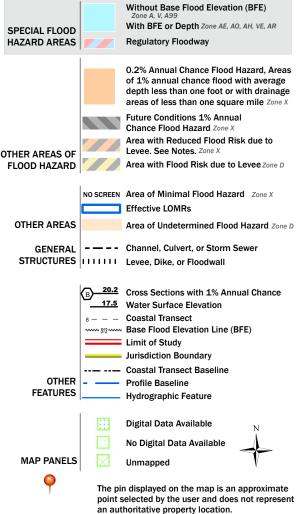
Riverine

Other

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

ATTACHMENT C – FEMA FIRMETTE MAPS

National Flood Hazard Layer FIRMette



Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Legend

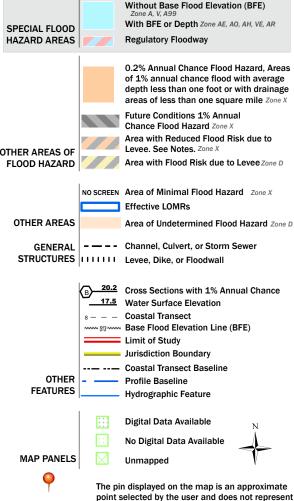
SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 3/2/2021 at 7:46 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

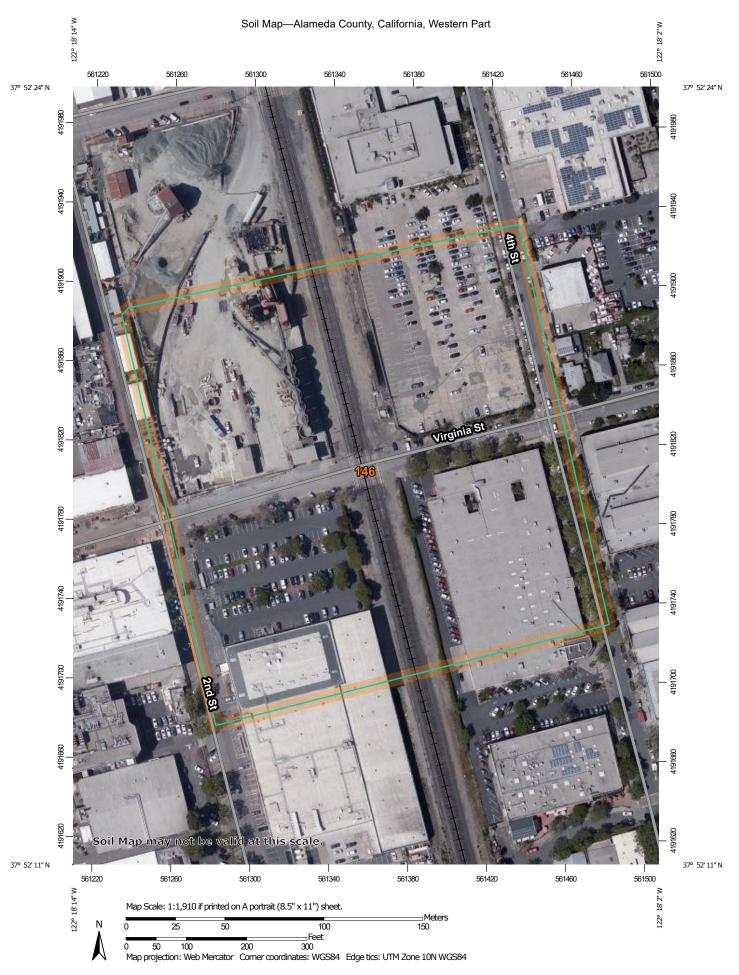
National Flood Hazard Layer FIRMette



Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT


This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 3/2/2021 at 7:41 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

ATTACHMENT D – NRCS WEB SOIL SURVEY MAPS

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

(o) Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

→ Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

LGEND

Spoil Area

Stony Spot

Wery Stony Spot

Wet Spot
 Other

Special Line Features

Water Features

Δ

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Alameda County, California, Western Part Survey Area Data: Version 17, May 29, 2020

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: May 1, 2019—May 31, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
146	Urban land	10.8	100.0%	
Totals for Area of Interest		10.8	100.0%	

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

(o) Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

→ Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

LGEND

Spoil Area

Stony Spot

Wery Stony Spot

Wet Spot
 Other

Special Line Features

Water Features

Δ

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Alameda County, California, Western Part Survey Area Data: Version 17, May 29, 2020

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: May 1, 2019—May 31, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
146	Urban land	7.7	100.0%			
Totals for Area of Interest		7.7	100.0%			

ATTACHMENT E – GROUNDWATER DATA

GROUNDWATER SAMPLING RECORD

Sheet 1 of 1

Client: KP NF	S Capital Projects, Regional N	cal Project Loca	ation:	Berkeley, California	Well ID:		
Project Name:	Monitoring Well	Project Nun	nber:	KAISERP~00010	MW23		
Well Information		MW Location:	North with coordinate	es N:573.4511',E:4346.8938'			
Well ID:	Well ID: MW23		tes: Intend to purge 3-6 well volumes then sample groundwater.				
Surface Elevation (ft.):	3.16'		Well has good recha	rge.			
Total Depth (ft.):	7.70'		Purged from 14:15-1	4:48 removing 7.125 gallons.			
Depth to Water:	2.3'		Got muddy at end of	purge - let recharge before sampling			
Casing Material:	PVC		Sample time 15:21 -	filling 6 containers.			
Well Diameter (in.):	2"						
Volume Water/Well Volu	me: est. 1-gallon						
Water Level:	0.86' amsl						
Pump Type:	Peristaltic	Weather Conditions:	Sunny				
Tubing Material:	Silicone	Sampling Date:	20.November.2019				
		Sampled By:	Theresa Heirshberg,	MS PG			

GROUNDWATER SAMPLING PARAMETERS

GROUNDWATER SAMPLING PARAMETERS									
Time	Water Depth	<u>Volume</u> <u>Pumped</u>	Pumping Rate	DO (mg/L)	Temp (°C)	SEC (uS/cm)	<u>pH</u>	ORP (mV)	Turbidity (NTU)
14:43	3 2.3'		0.23/min	11.05	20.13	1.692	7.42	79.6	
14:45	5			3.99	20.20	1.742	7.40	83.7	
14:47	7			3.44	20.25	1.788	7.34	83.0	

Total Volume of Water Removed During Sampling Event: 7.5 gallons

ATTACHMENT F - TSUNAMI HAZARD ZONE MAP

