Project Goals

Multimodal improvements for the Study Area will be developed to achieve the following:
- Support planned long-term growth and economic development, including access to Study Area employment centers
- Address the range of mobility needs for Study Area residents, businesses, workers, and visitors
- Increase the share of trips in the Study Area that occur by transit, biking, walking, carpooling, and shared mobility services
- Optimize the person trip throughput of existing infrastructure
- Improve connectivity between transportation modes and transportation service providers
- Provide a safe and convenient environment for pedestrians, bicyclists, and transit users
- Provide flexibility for future changes in transportation technology, including connected vehicles

This Project will develop a series of recommended near-, mid-, and long-term improvements for project delivery.

Near-Term and Mid-Term Improvements

Near-term and mid-term improvements (0-7 years) will address existing issues related to multimodal travel in the Study Area. These improvements will include “quick fix” solutions that can offer immediate benefits without significant environmental or right-of-way impacts. Near-term and mid-term improvements will serve as building blocks for a long-term multimodal vision for the corridor.

Examples of issues to be addressed through near-term and mid-term improvements include the following:
- Pedestrian and bicyclist safety
- Sidewalk gaps and ADA compliance
- Pavement rehabilitation
- Traffic signal timing
- Bus stop amenities and service improvements

This Project will serve as the scoping phase for near-term and mid-term improvements. Following this Project, these improvements will be advanced to the design phase in coordination with ongoing transportation projects in the Study Area. Based on cost and funding availability, these improvements will then be advanced for construction.

Long-Term Improvements

Long-term improvements (7+ years) will address anticipated needs over the next 20 years within the Study Area. Long-term improvements may also address more complex issues requiring robust environmental analysis or significant funding. These long-term projects will address increased growth in residents and employees in the Study Area in support of local jurisdictions’ long-term goals.

Examples of issues to be addressed through long-term improvements include the following:
- New or expanded transit services
- First-mile and last-mile connections to BART
- Regional bicycle network connectivity

This Project will develop a series of recommended near-, mid-, and long-term improvements for project delivery.

Near-Term and Mid-Term Improvements

Near-term and mid-term improvements (0-7 years) will address existing issues related to multimodal travel in the Study Area. These improvements will include “quick fix” solutions that can offer immediate benefits without significant environmental or right-of-way impacts. Near-term and mid-term improvements will serve as building blocks for a long-term multimodal vision for the corridor.

Examples of issues to be addressed through near-term and mid-term improvements include the following:
- Pedestrian and bicyclist safety
- Sidewalk gaps and ADA compliance
- Pavement rehabilitation
- Traffic signal timing
- Bus stop amenities and service improvements

This Project will serve as the scoping phase for near-term and mid-term improvements. Following this Project, these improvements will be advanced to the design phase in coordination with ongoing transportation projects in the Study Area. Based on cost and funding availability, these improvements will then be advanced for construction.

Long-Term Improvements

Long-term improvements (7+ years) will address anticipated needs over the next 20 years within the Study Area. Long-term improvements may also address more complex issues requiring robust environmental analysis or significant funding. These long-term projects will address increased growth in residents and employees in the Study Area in support of local jurisdictions’ long-term goals.

Examples of issues to be addressed through long-term improvements include the following:
- New or expanded transit services
- First-mile and last-mile connections to BART
- Regional bicycle network connectivity

This Project will develop a series of recommended near-, mid-, and long-term improvements for project delivery.
Travel Markets

Most trips made by auto

<table>
<thead>
<tr>
<th>Mode of Travel</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car (including drive-alone plus rideshare)</td>
<td>87%</td>
</tr>
<tr>
<td>Bike</td>
<td>2%</td>
</tr>
<tr>
<td>Transit</td>
<td>4%</td>
</tr>
<tr>
<td>Walk</td>
<td>7%</td>
</tr>
</tbody>
</table>

Source – Alameda Countywide Model, 2018

Local Trip Patterns

The corridor is used for shorter-distance travel versus end-to-end trips. More than half of trips in the Study Area are five miles or less, and almost no trips travel end to end along the corridor.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 miles or less</td>
<td>28%</td>
</tr>
<tr>
<td>5 miles or less</td>
<td>55%</td>
</tr>
<tr>
<td>10 miles or less</td>
<td>90%</td>
</tr>
<tr>
<td>End-to-end travel</td>
<td><0.05%</td>
</tr>
</tbody>
</table>

Source – Alameda Countywide Model, 2018

Traffic Operations

Six intersections currently operate over capacity:

- Foothill Blvd. and A St.
- Mission Blvd. and Niles Canyon Rd./Niles Blvd.
- Mission Blvd. and Mowry Ave.
- Mission Blvd. and I-680 southbound ramps
- Fremont Blvd. and Decoto Rd.
- Fremont Blvd. and Automall Pkwy.

Future traffic growth to 2040

- Year 2040 forecasts show substantial growth in the northern portion of the corridor, likely due to increased traffic diversion from Interstate 880.
- Traffic growth in the Warm Springs area would be due to planned employment growth.

Bicycle and Pedestrian

- 67% of the corridor has existing Class II bike lanes
- 65% of the corridor has planned long-term improvements to Class IV protected bike lanes
- 15% of the corridor lacks sidewalks on one or both sides

BART mode of access

Within the Study Area, a smaller share of BART passengers walk and take the bus to reach the station as compared to the BART system as a whole.

Source – 2015 BART Customer Satisfaction Survey

BART ridership

Ridership at BART stations in the Study Area is generally lower than for the BART system as a whole.

Source – 2015 BART Customer Satisfaction Survey

Bus Ridership Facts

- Bus service frequencies along the corridor are as high as 13 buses per hour, accounting for multiple transit providers and service types.
- AC Transit Lines 10 and 99 have the highest bus ridership in the Study Area. Each carries more than 3,000 riders per day.
- 40% of bus passengers in the Study Area board at a BART station.

Safety

84 fatal or severe injury collisions over five years

40% of the corridor is part of the high-injury PEDESTRIAN network

25% of the corridor is part of the high-injury BICYCLIST network

Between June 2012 and May 2017, half of fatal and severe collisions involved a pedestrian or bicyclist.

Source – BART, March 2018

Bus Time Comparison – San Leandro to Fremont

BART is currently twice as fast as driving for end-to-end travel during the PM peak. This highlights the need for strong connections to BART to leverage its travel time advantage.