#### **CyberTran International Inc. and ULRT**



Neil Sinclair, Chairman

Alameda Transportation Commission

Technical Advisory Committee 10/4/2018



## Conventional rail transit technology is expensive - many systems are costing over \$100 M/mile

| System             | Туре                 | Construction<br>Complete | Gross<br>Cost | Track<br>miles | Capital Cost /<br>Mile |
|--------------------|----------------------|--------------------------|---------------|----------------|------------------------|
| EBART              | Diesel Multiple Unit | Future                   | \$1.3B        | 21             | \$61 <b>M</b>          |
| SFO AirTrain       | Airport Circulator   | 2003                     | \$430M        | 6              | \$71M                  |
| Nanjing Metro      | Light Rail           | 2005                     | \$1B          | 13.5           | \$74M                  |
| Shenzhen Metro     | Light Rail           | 2004                     | \$1.5B        | 13.5           | \$115M                 |
| LA Gold Line       | Light Rail           | Future                   | \$899M        | 6              | \$150M                 |
| OAC                | Airport Circulator   | Future                   | \$496M        | 3.1            | \$160M                 |
| Linimo             | Low-speed Maglev     | 2005                     | \$955M        | 5.5            | \$174M                 |
| Las Vegas Monorail | Monorail             | 2005                     | \$730M        | 4              | \$182M                 |
| BART to Livermore  | BART                 | Future                   | \$1.2B        | 5              | \$240M                 |
| BART to San Jose   | BART                 | Future                   | \$4.7B        | 16.7           | \$281M                 |



#### **Idaho National Laboratory**

- Research indicated high cost of passenger rail and catalyzed system engineering project
- System Engineering Goals
  - Reduced Cost
  - Improved Service
  - Increased Safety





# Typical Rail Capital Cost Breakdown





#### Passenger Rail Is Heavy





#### **Cost of Weight**





#### How Many Vehicles to Carry 120 Passengers?





## Lowest System Cost



#### Based on analysis, design parameters established

- 6 to 30 Passengers per Vehicle
- Computer Controlled Low Operating and Capital Costs
- Lightweight 10,000 Pounds
- Low Cost, Proven Materials and Technologies
- Steel Wheel on Steel Rail Most Energy Efficient, High-speed Capable
- Electrically Powered Clean, Efficient, Renewable Energy Sources







#### **Lightweight Guideway**

product sustainability markets product development implementation strategy management financials appendice

Easy and quick to install No ground clearing Smaller foundations

Components prefabricated offsite Can be built off the end of itself Grade separated for safety





#### **Off Line Stations**

product sustainability markets product development implementation strategy management financials appendices

Increased line capacity

Network capable

On-demand service

Direct-to-destination travel





#### Initial Development at INL - Cost Analyses

- Morrison-Knudsen, 1991, \$5.8 M/mile
- Parsons, Brinckerhoff, Quade, and Douglas, 1995, \$2.8 M/mile (guideway only)
- Applied Engineering Services, 1995, \$5M/mile
- BART all-inclusive cost, 2007, \$25 M/mile





#### **Initial Development at INL – Testing**

- Prototype vehicle and 2-mile track built and tested at 60 mph
- 2<sup>nd</sup> prototype vehicle built and tested in curves
- High-speed simulation, American Assn. of Railroads
- Further system design and testing





# Technology transferred from US DOE to CyberTran International, Inc.

product

sustainability

markets

product development

implementation strategy

managemen

financials

appendices





#### CTI Development - Analysis

- HNTB seismic analysis
- BART/CNCI investigative study including cost, civil structure design, and operational capability
- Technology program development



#### Reductions in Energy Consumption & Global Warming

product sustainability markets product development implementation strategy management financials appendices

#### High energy efficiencies

High operational efficiency

90% lower CO<sub>2</sub> than cars

Can be fully solar powered









#### **Other Environmental Benefits**

product sustainability markets product development implementation strategy management financials appendices

Avoided air pollution

Greatly reduced vehicle scrap

Reduced ecological impacts

Reduced land consumption











#### **Social Benefits**

product sustainability markets product development implementation strategy management financials appendices

Discourages urban sprawl

Increases social equity

Reduces auto collisions

Improves walking and biking environment











#### **External Economic Benefits**

product sustainability markets product development implementation strategy management financials appendices

Reduced consumption of oil

Lower traffic congestion



Avoids new automobile infrastructure





#### CyberTran as Henry Ford Mass Producing Mass Transit

implementation strategy Computer Off Line **Automation Stations** High Volume Many Small Vehicles Manufacturing **Enables** Lightweight Structures **Lower Cost** Public/Private Partnership **Faster Construction** Modular Fabrication



#### **Final Integration and Test Program (FITP)**

| +Establish a facility        |
|------------------------------|
| +Vehicle Development         |
| +Guideway Development        |
| +Control System Development  |
| +Station Development         |
| +Power System Development    |
| +Systems Integration         |
| +System Test                 |
| +Business Case for ADTS/ULRT |
| +Feasibility Studies         |
| +Corporate Development       |



#### **Product Development Plan**

product sustainability markets product development implementation strategy management financials appendice

**FITP** Low Speed **Low Speed Commercial Test & Cert High Density High Density Rapid High Density Rapid Transit Rapid Transit Transit Develop** Commercial **Test & Cert High Speed High Speed Develop High Speed** Commercial **Test & Cert** 



#### CyberTran Intellectual Property

- IP development in:
  - Vehicle
  - Controls
  - Guideway
  - Stations
  - Power
  - Maintenance and Monitoring
- US DOE intellectual property purchased by CyberTran International
- Currently 8 US patents issued including ULRT system patent



#### **CyberTran Key Executives**

- Neil Sinclair, Chairman
  - Advanced transportation systems business executive since 1990.
- Dexter Vizinau, President
  - Government Relations Specialist, 22 years at IBM
- Harry Burt, Board Secretary
  - Rail vehicle and system engineering management since 1969



#### **Consultants and Partners**

management

#### **Development Team**

- Deterministic Systems Inc
- StanTec
- **Todd Jersey Architecture**
- Interfleet
- Schwweitzer Engineering Labs
- BayPac
- University of California, Berkeley
- Lawrence Berkeley Laboratory •
- Lawrence Livermore/Sandia Natl. Lab

Control

A and E

Architecture

Rail Systems

Power Systems

Civil Engineering

**Advanced Control** 

Power Systems

Safety, Vehicle



### PORT OF OAKLAND JACK LONDON SQUARE ULRT BART CONNECTOR SYSTEM MAP



#### SOUTH BAY MOBILITY LINK



#### **Dublin to Livermore**



VALLEY MOBILITY LINK 1 OF 3

#### **Dublin to Livermore cont.**



VALLEY MOBILITY LINK 2 OF 3

#### **Dublin to Livermore cont.**



VALLEY MOBILITY LINK 3 OF

#### **Valley Mobility Link – LLNL to Tracy**

