

Freeway Performance Initiative

Maximize System Performance Through Technology

Goals

- Deploy current technology to better manage the congestion on our freeway system, including parallel arterial and transit systems
- Address recurrent congestion (bottlenecks) and non-recurrent congestion (incidents)

Key FPI Elements

- Incident Management
- Traveler Information
- Arterial Management
- Ramp Metering

Program for Arterial System Synchronization (PASS)

- Coordinates signals during peak periods (commute, school, etc.)
- Improves bike, ped and transit mobility on major arterials
- Develops incident management flush plans, traffic responsive plans, and event coordination plans (\$2M in FY2015)

Ramp Metering

- Control the rate at which vehicles enter a freeway facility through the use of traffic signals (i.e., breaking up vehicle platoon)
- Help ensure that the freeway is able to carry all the traffic it should be able to carry

FPI Ramp Metering Plans Operating Principles

- Coordinate freeway and arterial operations to ensure efficient operation of both facilities.
- 2. Promote high occupancy vehicles (HOV) preferential lanes at onramps where needed and if feasible.
- 3. Ensure that queues from metered ramps do not impede operation of local streets and intersections or block access to private property.
- 4. Ensure that if queues at metered ramps cannot be accommodated, metering will be set at a faster rate to eliminate the negative impact (queue override).

More Local Support for Ramp Metering Today

- Freeway Management Focus
 - Shift away from additional capacity to efficient operations of existing system
- Partnerships & Leadership
 - MTC, Caltrans & Congestion
 Management Agencies working
 together to deliver metering
- Responding to Local Concerns
 - Locals are concerned about spillback onto local streets and diversion
 - Metering rates developed within the Ramp Metering Implementation Plan are set to minimize spillback and diversion
 - Local jurisdictions are part of the technical committee providing direct input into the Ramp Metering Implementation Plan

Mobility Benefits of Ramp Metering Increased freeway throughput of 2-5% results in measurable mobility benefits

County/ Route	Corridor	Reduction In Travel Time		Reduction In Duration of Peak Period, hours
		Minutes	%	
SM 101	SB Hillsdale to University	19	57	1
ALA 580	EB Foothill to Greenville	11	33	2
SM 280	NB Sneath to Serramonte	3	28	1
SCL 85	SB Almaden to Cottle	4	52	1
SCL 87	NB Route 85 to Skyport	4	30	2
SCL 87	SB Charcot to Santa Teresa	9	41	1
ALA 580	WB Interstate 205 to Foothill	7	24	1
SCL 101	SB Embarcadero to De La Cruz	1	5	N/A
SCL 880	SB Route 237 to Stevens Creek	11	38	1

- Travel Time: Reduced 1 to 19 minutes (or 5 to 57%)
- Duration of Peak Period: Reduced 1 to 2 hours

What's Next: Active Management Strategies

Adaptive Ramp Metering

- Adaptive to <u>system-wide</u> traffic on a freeway corridor (not just at specific ramp location)
- Reduces freeway travel time by 3 to 10% (vs. conventional ramp metering)
- Examples:
 - Orange, Ventura, and Los Angeles Counties' Adaptive Ramp Metering (1990s)
 - Alameda CTC's I-80 Adaptive Ramp Metering (2015)

Other Active Traffic **Management Strategies**

(Hard shoulder running, park-ride management, dynamic pricing, variable speeds, contraflow lane, etc.)

P&R Management (LA Metro)