Handout 4.1

2013 CMP Update: Approach to use of HCM 2010 and Multimodal Level of Service Methodologies in LOS Monitoring and Land Use Analysis Program

Presented to ACTAC

Overview of Presentation

- CMP Legislation Requirements
- LOS Monitoring and Land Use Analysis Programs Process, Purpose & Methodology
- Exploring use of HCM 2010
- Applying HCM 2010 for LOS Monitoring and LUAP auto LOS
 - Assessment, Findings, and Recommendations
- Applying HCM 2010 for LOS Monitoring and LUAP multimodal LOS
 - Assessment, Findings, and Recommendations
- Summary of Recommendations and Action Requested

CMP Legislation Requirements

- Alameda CTC as the Congestion Management Agency (CMA) is required to prepare and update the Congestion Management Program (CMP) every two years
- The CMP is required to include five elements:
 - Level of Service Monitoring
 - Land Use Analysis Program
 - Travel Demand Management
 - Capital Improvement Program
 - Multimodal System Performance

Current use of HCM in Alameda County CMP

PurposeMonitor CMP roadway performance biennially and identify deficient segmentsIdentify impacts on MTS roadways and study mitigations from significant land use actions and development projectsHCM version currently used19852000Applied byAlameda CTCLocal jurisdictions preparing the Transportation Impact Analysis (TIA) reviewed by Alameda CTCData SourceField surveys (travel time runs)Computed based on projected traffic volumes using the Countywide Travel Demand Model		Level of Service (LOS) Monitoring	Land Use Analysis (LUAP) Program
HCM version currently used19852000Applied byAlameda CTCLocal jurisdictions preparing the Transportation Impact Analysis (TIA) reviewed by Alameda CTCData SourceField surveys (travel time runs)Computed based on projected traffic volumes using the Countywide Travel Demand Model	Purpose	Monitor CMP roadway performance biennially and identify deficient segments	Identify impacts on MTS roadways and study mitigations from significant land use actions and development projects
Applied byAlameda CTCLocal jurisdictions preparing the Transportation Impact Analysis (TIA) reviewed by Alameda CTCData SourceField surveys (travel time runs)Computed based on projected traffic volumes using the Countywide Travel Demand Model	HCM version currently used	1985	2000
Data Source Field surveys (travel time runs) Computed based on projected traffic volumes using the Countywide Travel Demand Model	Applied by	Alameda CTC	Local jurisdictions preparing the Transportation Impact Analysis (TIA) reviewed by Alameda CTC
	Data Source	Field surveys (travel time runs)	Computed based on projected traffic volumes using the Countywide Travel Demand Model

Other CMAs' use of HCM 2010 Auto LOS Methodology - LOS Monitoring

	SFCTA	VTA	CCTA	Alameda CTC	
Data collection	 Historically: GPS- based floating car runs 2013 onwards: private, commercially available data (speed) 	 Historically: Aerial photography Testing in 2014: Private, commercially available data (speed) & PeMS data (flow) 	 Historically: GPS-based floating car uns, PeMS 2013 onwards: PeMS, private, commercially available (BluefoothTM) data (speed) 	 Currently: GPS-based floating car runs Interest in testing private, commercially available data (speed) 	
Freeway HCM methodology (auto)	HCM 1985 (decided in 2011 CMP to continue to use speed as the LOS measure based on 1985 HCM to maintain historical comparisons, monitor exempt segments and identify potential deficiencies)	 HCM 2000 (since density data was collected historically, it was easy to move to using HCM 2000) Testing in 2014 - use of HCM 2010. 	Historically: HCM 1985 Currently testing HCM 2010	 Currently: HCM 1985 Proposed: maintain HCM 1985 	
Arterial HCM methodology (auto)	HCM 1985 for deficiency purposes HCM 2000 for informational purposes (segments)	HCM 2000 (intersections) Testing in 2014 - HCM 2010 (intersections)	 Historically: CCTALOS (planning method based on Circular 212) Currently testing HCM 2010 (HCM 2000 used at intersections where configuration does not allow use of HCM 2010) 	 Currently: HCM 1985 Proposed: maintain HCM 1985 Proposed: apply HCM 1985 and HCM 2000 for Tier 2 arterials 	
					10

HCM 2010 Auto LOS Methodology LOS Monitoring

- Issues:
 - Current and possible future data collection methods based on speed would not work for HCM 2010 freeway methods
 - Would lose ability to track prior LOS results and deficiency including deficiency plan progress if HCM 2010 is adopted – impacts both freeways and arterials Tier 1 network
 - Would lose simplicity/ease of understanding of speed-based LOS
- Recommendations:
 - Maintain HCM 1985 for freeways and Tier 1 arterials
 - Apply HCM 1985 and HCM 2000 for Tier 2 arterials since same speed based LOS is used with only difference being the arterial classification
 - No new data needed
 - Apply to 2012 and 2014 LOS results for Tier 2 arterials
 - Provides opportunity to compare LOS results using the two different methodologies, and identify whether and where it makes a difference, and determine future applications

ALAMEDA

ALAMEDA

- Considerations:
 - Data requirements are generally not much greater than what is already collected for Traffic Impact Analyses (TIA)
 - TIAs typically conduct simultaneous local and CMP analysis; may be select cases in which analysts need to use consistent methodologies for both purposes

Recommendation:

- Encourage use of HCM 2010 as methodology for studying auto impacts on roadway segments in CMP Land Use Analysis Program
- Provide flexibility to use same HCM methodology as local jurisdiction requires if absolutely needed

HCM 2010 Multimodal Level of Service Methodology Assessment

- Activities undertaken:
 - Literature review
 - Consultation with other CMAs
 - Sensitivity testing
- Findings:
 - Application of HCM 2010 MMLOS requires significant data inputs many inputs require field data collection
 - Methodology shows tradeoffs among modes between different design options (changes to geometry and signal timing)
 - LOS scores do not respond greatly to changes in operational factors e.g. travel speed for transit, auto volumes for bike/ped
 - Difficult to explain why certain inputs cause certain LOS scores black box
 - Other CMAs many have not adopted MMLOS, some even after significant pilot testing

ALAMEDA

- There is a need to provide comparable LOS monitoringtype performance monitoring for alternative modes
- HCM 2010 MMLOS not appropriate for illustrating year-toyear changes as mostly responds to changes in roadway geometry
- Recommendation:
 - Explore options for alternative multimodal monitoring methodologies based on the Countywide Multimodal Arterial Corridor Plan and Countywide Transit Plan, including identifying facilities to be monitored and measures to be followed

HCM 2010 Multimodal Level of Service Methodology: Land Use Analysis

Program

- Considerations:
 - Current guidance on multimodal impacts in TIAs is flexible; other CMAs have TIA guidelines that name specific types of multimodal impacts to evaluate
 - HCM 2010 MMLOS is not appropriate tool to show when new project auto traffic causes impacts on other modes
 - Many TIAs propose mitigations that change roadway geometry(e.g. widening or turn pocket) – HCM 2010 MMLOS is suitable for evaluating these changes
- Recommendations:
 - Adopt more robust language describing the types of impacts to transit, bicycles, and pedestrians that TIAs should consider
 - Encourage use of HCM 2010 MMLOS to assess multimodal tradeoffs from mitigation measures that change roadway geometry

	Auto LOS Methodology	Multimodal LOS Methodology
LOS Monitoring	 Maintain HCM 1985 and speed-based LOS assignment for freeways and Tier 1 network Apply HCM 1985 and HCM 2000 for Tier 2 network arterials to compare the LOS results and determine future approach in next CMP update 	 Leverage modal plans to identify network and performance metrics for better monitoring of alternative modes
Land Use Analysis Program	 Encourage HCM 2010 for evaluating auto impacts; provide flexibility to use HCM 2000 if needed to conform to local requirements 	 In the NOP response, clarify types of impacts for alternative modes and provide flexibility in methodology for analysis of those impacts Encourage HCM 2010 MMLOS to study tradeoffs from mitigation measures

Action Requested

 Provide input on the analysis and proposed recommendations regarding use of HCM 2010 for auto based LOS and multimodal LOS methodologies in LOS Monitoring and Land Use Analysis Program elements of the CMP

This page intentionally left blank

2013 Congestion Management Program Update:

Draft Modifications to the Level of Service Monitoring and Land Use Analysis Program

Background

- Alameda CTC, as a Congestion Management Agency (CMA), must prepare a Congestion Management Program biennially
- Analysis Program use Highway Capacity Manual methodologies Two required CMP elements – LOS monitoring and Land Use

Overview of current CMP practice

	Auto	Other modes
LOS Monitoring	Track LOS on CMP network using HCM 1985	Limited study of transit travel times and bicycle counts
Land Use Analysis Program	Require study of roadway segments using HCM 2000 in Transportation Impact Analyses (TIAs)	Require analysis of impacts on transit operators in TIAs

What is new in the HCM 2010?

- Updated auto LOS methodologies
- Multimodal LOS (MMLOS) ability to assign LOS letter grades for transit, bicyclists, and pedestrians, based on quality of user experience.

Why investigate HCM 2010 adoption?

The 2011 CMP recommended investigating use of HCM 2010 as a key next step. This recommendation was motivated by three considerations:

- Legislative mandate the CMP statute advises CMAs to use the most recent HCM in LOS monitoring activities
- Regional guidance MIC's CMP guidance encourages use of the 2010 HCM
 - Increasing multimodal focus interest in whether HCM 2010's

- Comparing the inputs required to assign auto LOS in the HCMs Staff conducted a technical evaluation of the HCM 2010 including: • Comparing the inputs required to assian an technical • Sencition:
- Sensitivity testing of how HCM 2010 MMLOS grades respond to key inputs using a spreadsheet model
- Consultation with other CMAs regarding plans for use of HCM 2010 (both auto LOS and MMLOS)

Auto LOS

Findings of assessment

- Cannot assign freeway segment LOS based on speed post-HCM 1985
- speed classifications change Arterial segment free flow
 - after HCM 1985
- level application, but excessive New data needed for arterials in HCM 2010 - okay for projectfor larger scale use

Very data-intensive

HCM 2010 MMLOS

Grades not strongly sensitive to Strong at illustrating effects of speed for transit or vehicle Can be difficult to tell why operational changes (e.g. roadway design changes volumes for bike/ped) scores change

Considerations for recommendations

- effective/feasible to collect the data? What about future data Current and future data availability (auto LOS): can the methodology be applied with data available? Is it costcollection methods?
- enable results to be compared to previous years (e.g. to assess <u>Ability to track trends (auto LOS):</u> would the new methodology CMP conformance in LOS).
- appropriate parameters (will it show change from year-to-year or Suitability (MMLOS): does the methodology respond to the from no project-to-project)?

<u>Recommendations</u>

	Auto	Other modes
ros	 Continue to use HCM 1985 	 Leverage modal plans to
Monitoring	for deficiency purpose	develop networks and
	 Apply HCM 2000 and 1985 	metrics for enhanced multi-
	to Tier 2 arterials to make	modal monitoring
	determination on future	
	application in 2015 CMP	
Land Use	 Encourage use of HCM 	 Adopt more robust
Analysis	2010 to study segment	language describing types
Program	impacts; permit flexibility if	of impacts to transit,
)	analysts need to conform	bicyclists, and pedestrians
	to local requirements	to be considered
		 Encourage use of MMLOS
		to evaluate multi-modal
		tradeoffs from mitigation
		measures

13

2013 Congestion Management Program Update:

mendation odology wor bility to track rmance)
reeway segme t compatible ating car) and commercially collection me beed data (LC ised on densit
leeded tways and no l so can be app tor informatio conformity is tunity to comp n different , and determin ion
ata needs for ts; additional
Is within scope collected for

ıte: Use Analysis Program	so scope of application would be limited.	
2013 Congestion Management Program Updat Draft Modifications to the Level of Service Monitoring and Land U		

This page intentionally left blank

ATTACHMENT B: APPROACH TO USE OF HCM 2010 AND MMLOS AT OTHER CMAS

This attachment presents detailed information on other comparable Bay Area CMAs' (San Francisco County Transportation Authority, Valley Transportation Authority, and Contra Costa Transportation Authority) current and future plans for use of HCM methodologies in their CMPs. Specifically, information is provided on:

- Use of HCM 2010 for the auto based roadway LOS methodology
 - As part of LOS monitoring activities since adoption of HCM 2010 is related to current and future plans for data collection
 - As a required methodology to study auto impacts in Transportation Impact Analyses reviewed for Land Use Analysis element
- Use of MMLOS methodologies
 - To provide increased monitoring for alternative modes in the LOS monitoring
 - As part of the guidelines for Transportation Impact Analysis reviewed for Land Use Analysis element.

HCM 2010 Application for Auto based Roadway LOS

	SFCTA	VTA	ССТА	Alameda CTC
Data collection	 Historically: GPS-based floating car runs 2013 onwards: private, commercially available data (speed) 	 Historically: Aerial photography Testing in 2014: Private, commercially available data (speed) & PeMS data (flow) 	 Historically: GPS-based floating car runs, PeMS 2013 onwards: PeMS, private, commercially available (Bluetooth™) data (speed) 	 Currently: GPS- based floating car runs Interest in testing private, commercially available data (speed)
Freeway HCM methodology (auto)	 HCM 1985 (decided in 2011 CMP to continue to use speed as the LOS measure based on 1985 HCM to maintain historical comparisons, monitor exempt segments and identify potential deficiencies) 	 HCM 2000 (since density data was collected historically, it was easy to move to using HCM 2000) Testing in 2014 - use of HCM 2010. 	 Historically: HCM 1985 Currently testing HCM 2010 	 Currently: HCM 1985 Proposed: maintain HCM 1985
Arterial HCM methodology (auto)	 HCM 1985 for deficiency purposes HCM 2000 for informational purposes (segments) 	 HCM 2000 (intersections) Testing in 2014 - HCM 2010 (intersections) 	 Historically: CCTALOS (planning method based on Circular 212) Currently testing HCM 2010 (HCM 2000 used at intersections where configuration does not allow use of HCM 2010) 	 Currently: HCM 1985 Proposed: maintain HCM 1985

Table B1: Other CMA approaches to applying HCM auto based roadway LOS methodology for LOS monitoring data collection

Table B2: Other CMA approaches to applying HCM auto based roadway LOS methodology forLand Use Analysis Program data collection related to Transportation Impact Analysis

	San Francisco Planning Department*	VTA	ССТА	Alameda CTC
Freeway	• HCM 2000	 Current: HCM 2000 Under consideration: HCM 2010 	• HCM 2010	 Currently: HCM 2000 Proposed: HCM 2010 encouraged
Non-Freeway	HCM 2000 (intersections)	 Current: HCM 2000 (intersections) Under consideration: HCM 2010 (intersections) 	HCM 2010 (intersections)	 Currently: HCM 2000 (segments) Proposed: HCM 2010 encouraged

Notes:

* San Francisco's Planning Department reviews Traffic Impact Analyses on behalf of the CMA, however considerations may be different as this review serves as both City- and CMA-level review.

Table B3: Other CMA	approaches to applying	HCM 2010 MMLOS for LOS Monitoring	

	SFCTA	VTA	CCTA	Alameda CTC
Overall	 No plans to adopt MMLOS 	 Pilot analysis of MMLOS bike/ped methodologies. 	 Exploring applying multimodal LOS measures that may not be HCM 2010 MMLOS as part of Action Plan update 	Currently: limited multimodal reporting in LOS monitoring. Extensive countywide multimodal reporting in Performance Report.
Transit	Report on transit travel time; exploring reporting on transit reliability measures. Utilize data obtained from SFMTA APC and AVL units.	 No facility specific reporting. Exploring use of big data approach to study transit speed, reliability, and causes of delay on key corridors. 	As above	 Proposed: use countywide modal studies to identify monitoring network, metrics, and data sources
Bike/Ped	 No facility specific reporting. Report on bike/ped counts, network build-out (miles built), and collisions. 	 No facility specific reporting. Report bike/ped counts biannually. 	As above	 Current: annual bike/ped count program Proposed: use countywide modal studies to identify monitoring network, metrics, and data sources

<u>Notes:</u> APC = Automated Passenger Counter, AVL = Automatic Vehicle Locater (i.e. GPS)

Table B4: Other CMA approaches to applying HCM 2010 MMLOS in Land Use Analysis Program related to Transportation Impact Analysis

	SF Planning Department	VTA	ССТА	Alameda CTC
Overall	 TIA guideline document No plans to adopt MMLOS 	 TIA guideline document Pilot analysis of MMLOS bike/ped methodologies. Continuing to study to determine role in TIAs. 	 TIA guideline document MMLOS encouraged but not required 	 Current: no TIA guideline document. Flexible NOP response Proposed: TIA guidelines with expanded list of multimodal impacts. Encourage MMLOS for evaluating mitigation measures.
Transit Impact Requirements	 Custom methodology for studying transit impacts that looks at capacity. Consideration of access to transit and delays to transit from site- related activities also required. 	 TIA guidelines include list of specific effects on transit that should be considered. List includes capacity, congestion that affects transit services, and access/earess. 	 No language in TIA Guidelines about how to study transit, impacts 	 Proposed: require study of effects on transit operations, capacity, and access/egress; no required methodology and qualitative analysis sufficient
Bicycle/ Pedestrian Impact Requirements	 TIA guidelines state that impacts on pedestrians and bicycles should be analyzed qualitatively or quantitatively depending on project size and circumstances. HCM 2000 used if quantitative analysis required. Planning Dept. determines required analysis on case-by-case basis. 	 TIA guidelines name specific effects on bicycles and pedestrians that should be considered List includes effects of vehicle trips on existing bike and pedestrian conditions, consistency with adopted plans, and if project or mitigations would impede current connections. 	 No language in TIA Guidelines about how to study bike or pedestrian impacts 	 Proposed: require study of effects on bikes and peds including no required methodology and qualitative analysis sufficient

This page intentionally left blank

ATTACHMENT C: OVERVIEW OF MMLOS AND SENSITIVITY TESTING

Overview of MMLOS

The HCM 2010 introduced a series of new methodologies for assigning LOS scores for transit, bicycles, and pedestrians. Consistent with LOS for autos, these methodologies focus on the quality of experience for a user of a facility. However, unlike auto LOS for which a single variable (speed or density) determines LOS, transit, bicycle, and pedestrian LOS scores are composites based on a series of variables. For instance, transit LOS takes into account the frequency of vehicle arrivals, the on-time percentage, the travel time, the presence of covered shelters, and crowding, among other factors.

A key aspect of the research to develop MMLOS is the calibration of the various inputs – the determination of how much one factor should influence the overall modal LOS score, relative to other factors. The calibration was based on user surveys. For pedestrian and bicycle modes, participants in video labs in four cities watched footage of street segments and rated conditions on a 1-6 scale. For transit, national traveler response data to changes in transit service quality were used.

The MMLOS models can be applied at different scales, illustrated in Figure C1. Pedestrian and cyclist LOS can be assessed at the link, signalized intersection, segment, or facility scale; transit LOS can be assessed at the segment or facility scale. The Alameda CTC applications of HCM methodologies involve application at a segment scale, the MMLOS scores for segments are based on scores for the link and intersection that comprise that segment.

Figure C1: Scales of application of MMLOS

Table C1 summarizes all of the different factors that the MMLOS model takes into account in its computation of a modal LOS score at a given scale. The plus or minus signs indicate whether this factor positively or negatively influences the LOS. It is difficult to generalize about the magnitude of influence of different factors on an LOS score. As the table indicates, larger scale applications (e.g. segment or facility) tend to make use of the LOS score from component units (e.g. the segment LOS combines the link and intersection LOS, plus a few additional factors).

Table C1: Variables Used in MMLOS

Mode	Link	Signalized Intersection	Segment	Facility
Pedestrian	Outside travel lane width (+) Bicycle lane/ shoulder width (+) Buffer presence (e.g., on-street parking, street trees) (+) Sidewalk presence and width (+) Volume and speed of motor vehicle traffic in outside travel lane (-)	Permitted left turn and right-turn-on- red volumes (-) Cross-street motor vehicle volumes and speeds (-) Crossing length (-) Average pedestrian delay (-) Right-turn channelizing island presence (+)	Pedestrian link LOS (+) Pedestrian intersection LOS (+) Street-crossing difficulty (-/+) Delay diverting to signalized crossing Delay crossing street at legal unsignalized location	Length weighted average of component segment LOS
Bicycle	Volume and speed of traffic in outside travel lane (-) Heavy vehicle percent (-) PCI (+) Bicycle lane presence (+) Bicycle lane, shoulder, and outside lane widths (+) On-street parking use (-)	Width of outside through lane and bicycle lane (+) Cross-street width (–) Motor vehicle traffic volume in the outside lane (–)	Bicycle link LOS (+) Bicycle intersection LOS, if signalized (+) Number of access points on right side (-)	Length weighted average of component segment LOS
Transit (mixed flow vehicles)	N/A	N/A	Access to transit (uses pedestrian link LOS) Wait for transit (frequency) Actual bus travel speed (+) Stop amenities (+) Excess wait time due to late bus/train arrival (-) Crowding (-)	Length weighted average of component segment LOS

Source: Kittelson Associates, Inc. (2012) HCM 2010: Urban Street Concepts: Pedestrian, Bicycle, and Transit. Presentation to MTC Arterial Operations Committee. March 21, 2012.

Sensitivity Testing

Alameda CTC staff performed sensitivity testing of the MMLOS methodologies by implementing the MMLOS equations in a spreadsheet model, and then observing how the MMLOS score changed when key variables were allowed to change within reasonable ranges.¹ Sensitivity testing is performed for the following applications:

Methodology	Variables Tested	
Transit (Segment)	On-time percentage	
	Bus speed (including delays)	
	Frequency of Bus Arrivals	
Bicycle (Link)	Automobile volumes	
	Automobile speeds	
	On-street parking occupancy	
	Outside lane effective width	
Pedestrian (Link)	Automobile volumes	
	Automobile speeds	
	Effective walkway width	

Table C2: Variables Considered for MMLOS Sensitivity Testing

General findings of sensitivity testing for (mixed flow) transit include the following:

- Transit LOS is highly sensitive to the frequency of bus arrivals (headway), though this sensitivity diminishes when headways reach 10 min or less.
- Transit LOS is not highly sensitive to on-time percentage. On-time percentage can decline by 20-30 percent without dropping an LOS grade. A substantial body of research² shows that poor reliability is a common reason why transit riders stop riding transit, so this attribute may be undervalued in the MMLOS transit score.
- Transit LOS is not highly sensitive to commercial speed³ (i.e. speed that a transit vehicle actually achieves, when factoring in delays from boarding, signals, etc.). The commercial speed can drop by 5 mph or more without dropping an LOS grade. Many AC Transit routes operate at commercial speeds between 10 mph and 15 mph, so a 5 mph change in commercial speed is quite significant.

General findings of sensitivity testing for bicycles and pedestrian include the following:

 Bicycle and pedestrian LOS are both most sensitive to roadway space allocation. For bicycles, adding effective width to the outer lane – either through a wider lane or a bike lane – improves LOS by at least a letter grade. For pedestrians, adding on-street parking or items that provide a physical barrier from autos (e.g. trees, street furniture) greatly increase LOS.

¹ This spreadsheet model uses the equations from the HCM 2010 MMLOS methodologies and computes the MMLOS "score" (which is used to determine letter grade) for a given set of inputs.

² Carrell, A., A. Halvorsen, J. Walker (2012). Passengers Perceptions of and Behavioral Adaptation to Unreliability in Public Transportation. Submitted for presentation at the 92nd Transportation Research Board Annual Meeting.

³ When elasticity of demand to travel time set at its default value for urban areas.

- Bicycle and pedestrian LOS are not very sensitive to auto flow rates or speeds. For instance, flow rates can increase by several hundred veh/hr without seeing a change in bicycle or pedestrian LOS. Similarly, speeds can increase by 10 mph or more without registering a change in bicycle or pedestrian LOS. The lack of emphasis on traffic volumes and speeds in bicycle and pedestrian LOS seems contrary to some research on why people choose to use active transportation modes (e.g. a 2010 Alameda CTC survey found that safety concerns were the second most common reason why residents chose not to bicycle).⁴
- Bicycle LOS is highly sensitive to pavement quality.

Illustration of Sensitivity Testing

Figure C2 and Table C3 below provides an illustration of the sensitivity testing Alameda CTC staff performed of MMLOS. Similar graphs were produced for the variables in Table B2, and are available on request.

Figure C2 illustrates how bicycle LOS score changes in response to variations in the automobile flow rate, when all other inputs are set to the typical values indicated in Table C3. The figure shows that at auto flow rates less than 100 vehicles per hour per lane (vphpl), bicycle LOS is A, from 100 vphpl to roughly 400 vphpl, bicycle LOS is at B, and above 400 vphpl bicycle LOS is at C. While most users would expect cyclist conditions to degrade if a facility handles hundreds of additional vehicle trips per hour (e.g. goes from 600 vphpl to 1100 vphpl), this analysis indicates that bicycle LOS can remain at C, even with significant added vehicle traffic.

Figure C2: Illustration of MMLOS sensitivity testing

⁴ Alameda CTC (2012). Bike to Work Day and Get Rolling Advertisement: Assessment Report. Prepared by EMC Research, February 2012.

Table	C3:	Values	used i	n illustration	of MMLOS	sensitivity	testing

Input Variable	Value	Units
Segment length	500	ft
Bike running speed	13	mi/hr
Bike control delay	10	sec
Number through lanes (direction of travel)	2	#
Pavement condition rating	3	1-6 scale
On-street parking occupancy	50	%
Width outside through lane	10	ft
Width outside shoulder (can be parked in)	8	ft
Width bike lane	6	ft
Percent Heavy Vehicles	3	%
Automobile Flow Rate (direction of travel)	Allowed to vary	veh/hr/ln
Motorized vehicle running speed	25	mi/hr
Curb present?	Y	

This page intentionally left blank

ATTACHMENT D: PROPOSED NEW LANGUAGE ON MULTIMODAL IMPACTS FOR NOTICE OF PREPARATION (NOP) RESPONSE

Transit Impacts

The DEIR should consider how the project may impact transit operators and riders, including:

- <u>Mixed flow transit operations:</u> the DEIR should evaluate if vehicle trips generated by the project will cause congestion that degrades transit vehicle operations. It should not be assumed that transit operational impacts will not exist if a roadway operates at better than automobile LOS F. This analysis may be qualitative and may be based on auto traffic circulation analysis, but should consider that transit vehicles may have unique considerations compared to autos (e.g. pulling into and out of stops, longer gaps needed for left turns).
- <u>Transit capacity:</u> the DEIR should evaluate if transit trips generated by the project will cause ridership to exceed existing transit capacity. Both vehicle and station circulation should be considered. Transit operators should be consulted to see if any routes or stations in the project area require capacity analysis. The Alameda CTC can assist in providing ridership data by line if such analysis is required. If a project will cause transit capacity impacts such that additional service will be required, funding for transit operations cannot be assumed and appropriate mitigations considered.
- Transit access/egress: the DEIR should assess whether pedestrian connections between the project site and transit stops are adequate to support any project trip generation assumed to be served by transit. This assessment should include consideration of the safety of crossing opportunities, as needed.

Bicycle Impacts

The DEIR should consider impacts on facilities in the Countywide Bike Network, including:

- <u>Effects of vehicle traffic on bicyclist conditions:</u> the DEIR should evaluate if vehicle trips generated by the project will present barriers to bicyclists safely crossing roadways or executing turning movements as well as whether project traffic volumes necessitate greater separation between bicyclists and vehicles. This analysis may be qualitative and may be based on auto traffic circulation analysis.
- <u>Site development and roadway improvements:</u> the DEIR should evaluate if the project or its mitigations will reduce or sever existing bicycle access or circulation in the area as well as whether the project could produce conflicting movements between bicyclists and vehicle turning into and out of project driveways.
- <u>Consistency with adopted plans</u>: the DEIR should disclose whether the project is consistent with the Alameda Countywide Bicycle Plan, and should consider opportunities to implement the plan in the project vicinity, either in conjunction with other roadway improvements required by the project or as a mitigation measure for air quality or traffic circulation impacts.
- o Other impacts as appropriate for the project

Pedestrian Impacts

The DEIR should consider impacts on pedestrian facilities in the Areas of Significance identified in the Alameda Countywide Pedestrian Plan, including:

- <u>Effects of vehicle traffic on pedestrian conditions:</u> the DEIR should evaluate if vehicle trips generated by the project will present barriers to pedestrians safely crossing roadways at intersections and mid-block crossings. This analysis may be qualitative and may be based on auto traffic circulation analysis.
- <u>Site development and roadway improvements:</u> the DEIR should evaluate if the project or its mitigations will reduce or sever existing pedestrian access or circulation in the area as well as whether the project could produce conflicting movements between pedestrian and vehicle turning into and out of project driveways. The need for new crossing opportunities or circulation given project pedestrian access points and likely access/egress routes should be considered.
- <u>Consistency with adopted plans</u>: the DEIR should disclose whether the project is consistent with the Alameda Countywide Pedestrian Plan, and should consider opportunities to implement the plan in the project vicinity, either in conjunction with other roadway improvements required by the project or as a mitigation measure for air quality or traffic circulation impacts.
- Other impacts as appropriate for the project

Multimodal Tradeoffs Associated with Mitigation Measures

For any mitigation measures that involve changes in roadway geometry, intersection control, or other changes of the transportation network, the DEIR should include a discussion of the multi-modal tradeoffs associated with this change. This analysis should clearly identify whether the mitigation will result in an improvement, degradation, or no change in conditions for automobiles, transit, bicyclists, and pedestrians. The HCM 2010 Multimodal Level of Service methodology is encouraged as a tool to evaluate these tradeoffs.