Reliability and Duration of
 Congestion metrics are
 measured for the first
 time in 2016 further
 utilizing the benefits of
 commercial speed data

7 | Big Data Performance Metrics

Recently, new data technologies and performance measurement approaches have been radically transforming congestion monitoring practic es nationwide. These technologies and approaches revolve around the emerging fields of Big Data and Analytics. These a nalytic al techniques improve the monitoring program by providing more data fora lower cost and widening the scope of congestion analysis.

Using the commercial speed data from INRIX, big data perfomance metric s of reliability and duration of congestion are computed (for informational purposes) for the first time in the 2016 LOS Monitoring Report. Data for these additional performance metrics was used from all Tuesdays, Wednesdays and Thursdays in the defined monitoring period. In this report, the reliability and duration of congestion performance measures are analyzed for the Alameda County freeway network.

7.1 | Reliability

The reliability metric considers the travel time variability. For a user, this is important to determine how much time to allow for a trip to a rive on time with a degree of certainty. Unreliable tra vel times can be caused by normal fluctuations in demand, inclement weather, incidents, work zones and special events. ${ }^{15}$ These influencing factors can cause signific ance variation in the travel times.

The calculation of relia bility for the curent project includesthe following assumptions:

- The monitoring periods for this relia bility a na lysis were 7:00 a.m. to 9:00 a.m. for the moming peak period and 4:00 p.m. to 6:00 p.m. for the aftemoon peak period.
- Reliability metrics were calc ulated based on INRIX measurements of a verage speed of all vehic les from each minute within the monitoring period. This differs from a traditional relia bility calculation which is calculated foreach individual vehicle.

7.1.1| The Reliability Concept

A reliability analysis istypically depic ted using a probability distribution function. For example, if a driver takes the same trip for 34 days, the graphic shows the travel time results for each of those 34 surveys (see Figure 7-1). Insights may be obtained by reviewing the:

- High point on the graph which a ligns with the most commonly experienced travel times;

[^0]- Leftmost and rightmost parts of the distribution which align with the minimum and maximum experienced travel times; and
- The range of travel times or the difference between the maximum and minimum occuring travel times.

Probability density

« low travel times
high travel times \rightarrow
Figure 7-1: Example Probability Distribution Function

In order to compare the relia bility a cross va rious tra vel time distributions, the following performance measures are defined. ${ }^{16}$

Planning Time: In planning a trip, how much time should one allow for a trip to ensure 95% on-time arival. It is equivalent to the $95^{\text {th }}$ percentile of tra vel times experienced (i.e. if the same trip was taken 100 times, the 95th percentile would be equal to the travel time of the 95th longest trip).

Planning Time $=95$ th Percentile Travel Time

Planning Time Index (PI): To a llow for compa rison ac ross different routes and different trip lengths, the planning time index is a ratio of the 95th percentile travel time to the free flow travel time. If a trip takes 20 minutes in light conditions (i.e. free flow) and a planning time of 30 minutes will ensure 95% on-time a rival, then the planning time index is 1.5. A free flow of 65 mph was assumed as is common practice in reliability analysis. ${ }^{17}$

$$
\text { Planning Time Index }=\frac{95 \text { th Percentile Travel Time }}{\text { Free Flow Travel Time }}
$$

BufferTime/ Index: The buffer index (BTI) represents the extra buffer or cushion that one allows in addition to the average travel time to account for any delay. For example, if a trip in the moming peak no mally takes 25 minutes (i.e. mean travel time), and 30 minutes will ensure a 95% chance

[^1]of on-time amival, then the buffer time is 5 minutes a nd the buffer index is 0.2 . A larger buffer index indic ates a wider range of tra vel times a nd represents less reliable travel.
\[

$$
\begin{aligned}
& \text { Buffer Time }=95 \text { th Percentile Travel Time }- \text { Mean Travel Time } \\
& \text { Buffer Index }=\frac{95 \text { th Percentile Travel Time }- \text { Mean Travel Time }}{\text { Mean Travel Time }}
\end{aligned}
$$
\]

Figure $7-2$ shows an example probability distribution and labels the reliability metrics.

Figure 7-2: Example Probability Distribution Function with Reliability Metrics

7.1.2 | Reliability Case Study for I-880 Comidor

Since reliability is calc ulated for the first time in this monitoring cycle, the reliability concept is expanded in a case study on the I-880. This section reviews the probability distribution functions on the $1-880$, then shows the reliability metrics for this road and fina lly provides disc ussion about the reliability in the northbound and southbound directions in both the moming and aftemoon peak periods.

The probability distribution function on the full length of I-880 in Alameda County is presented in Figure 7-3. It shows the distribution of moming and aftemoon peak period travel times for the northbound and southbound directions separately. Note that the graphs in this chapter and the Appendix show two colored distributions, pink and green, for the moming and aftemoon peak periods, respectively, while the darker shades of both colors represent regions occupied by both peak period distributions.

Figure 7-3: Distribution of Travel Times along I-880 in Alameda County (2016)

In the northbound direction, which has a total length of 35.4 miles, the lower limits for travel time for the moming and aftemoon periods were approximately 30 minutes (71 mph) and 51 minutes (42 mph) respectively. The moming travel time distribution had a median of 48 minutes (44 mph) and a maximum of 70 minutes (30 mph). The aftemoon travel time distribution had a median of 65 minutes (33 mph) and a maximum of 130 minutes (16 mph). Overall, in the moming, the northbound direction experiences moderate congestion with a small a mount of free flow traffic. The aftemoon period has heavier congestion with a wider range of travel times.

In the southbound direction, which hasa total length of 35.2 miles, the lower limits for travel time for the moming and aftemoon periods were approximately 36 minutes (59 mph) and 30 minutes (70 mph) respectively. The moming peak travel time distribution hasa median of 49 minutes (43 mph) and a maximum of 104 minutes (20 mph). The aftemoon travel time distribution has median of 44 minutes (48 mph) a nd a maximum of 94 minutes (23 mph). Overall, the southbound direction experienc es heavier congestion in the moming period and a mixture of moderate congestion and free flow in the aftemoon period. Both directions have a wide range
of travel times. The higher frequency of longer travel time for southbound moming trips and northbound aftemoon trips correspond to the commuter traffic flowsto and from the employment centers in the South Bay and southem Peninsula which are reached by l-880.

Figure 7-4 then adds the relia bility measures to previous figure. For the northbound direction, the moming peak period has a lowermean travel time and shorter buffer time (meaning better travel time relia bility), compared to the aftemoon peak. Forthe southbound direction, the mean moming and aftemoon peak mean travel times are similar, but the aftemoon has a much longer buffer time (meaning poorertravel time reliability).

Figure 7-4: Travel Time Distributions on I-880 with Reliability Measures (2016)

A summary of all these values is presented in Table 7-1. The table shows that southbound I-880 in the aftemoon peak period is the least reliable (BTI $=0.8$). A value of 0.8 indicates that drivers would need to allow nearly the same a mount of travel time beyond the mean travel time to ensure 95% on-time arival. It also shows that moming peak period travel, in both directions, is generally more reliable with the lowest BTl value of 0.4.

Table 7-1: Summary Reliability Statistics for 1-880 (2016)

Dir	Length (mi)	Peak	Free Row Travel Time (mins)	Mean Travel Time (mins)	95th Percentile / Planning Time (mins)	Buffer Time (mins)	PII	BTI
NB	35.4	AM	32.7	48.3	65.9	17.5	2.0	0.4
		PM	32.7	71.8	122.1	50.3	3.7	0.7
SB	35.2	AM	32.5	51.5	71.0	19.4	2.2	0.4
		PM	32.5	48.1	87.7	39.6	2.7	0.8

7.1.3| Results

The results for the relia bility measures were computed individually for sma ller freeway segments ac ross the entire CMP freeway network. The study team determined the limits of these smaller freeway segments by combining one or more CMP segments between major freeway system interchanges or county borders. Considering the I-880 case study further to illustrate this concept, there were three Relia bility Segments: between I80 and State Route 92, between State Route 92 and State Route 84 / Decoto Road, and between State Route 84 / Decoto Road and the Santa Clara County Line. The reason for using these longer segments to a nalyze reliability is to provide more useful results to freeway managers and agencies, by better reflecting the typical traveler experience of the combined effects of the smaller segments on the travel comidor. If CMP segments were used, then the analysis would be focused toward the loc ation of individual bottlenecks, rather than tra vel on a length of comidor. The commercial speed data wasaggregated forboth peak periods during the monitoring period to compute travel time distributions on these individual Relia bility Segments.

The segments a nd their relia bility results for the complete CMP freeway network are presented in Appendix H , a long with tables, graphs and maps for the following:

- Travel time and relia bility for each individual Relia bility Segment.
- Travel time distributions for each Relia bility Segment.
- Moming and aftemoon period mapsshowing the reliability foreach Reliability Segment

Additional findings can a lso be seen on the reliability distributions. Continuing the case study on I-880, the southem segment of I-880 (between the Santa Clara County Line and State Route 84 / Decoto Road, Relia bility Segments N23 and N28) exhibits poor relia bility and longer travel times to and away from the South Bay employment centers during the commute direction peak period. The middle segment (between State Route 84 / Decoto Road and State Route 92, Reliability Segments N24 and N27) shows similar but relatively less pronounced

commuter peaking. The northem segment (between State Route 92 and I80, Reliability Segments N25 and N26) has no peaking, with poor reliability and long travel times in both directions in both the moming and aftemoon peak periods. It is likely that the northem section is serving a combination of commute trips to and from San Francisco, Peninsula, as well as South Bay employment centers.

Now reviewing otherparts of the freeway network, the reliability results can be compared to the LOS monitoring results to yield interesting observations. In general, the reliability is worse on segments that also experience a lot of congestion. For example, one of least reliable segments is on the I-80 westbound between the Contra Costa County Line and the Bay Bridge Toll Plaza in the aftemoon peak period. Much of this segment is LOSF at this time. However, this relationship is not universal. For example, in the aftemoon peak period, State Route 24 showed LOSF in the eastbound direction and LOSA in the westbound direction. However, the reliability in both directions was approximately equal. For the eastbound direction, there is poor relia bility that results from the presence of congestion. However, the westbound could possibly warrant more investigation to detemine the source of the poor reliability. They may include occasional queuing back from the MacArthur Maze which is already known to have heavier congestion. Altematively, it could be caused by regular incidents either on this segment or a round the MacArthur Maze, or a greater variation by the day of week.

There are also examples of roadways that experience congestion, yet are more reliable. Consider State Route 92 in the aftemoon peak period. The westbound direction experiences LOSE conditions, quite reliably. One can travel at the free flow speed in just over 10 minutes; however on average during the peak it takes approximately 19.5 minutes. The $95^{\text {th }}$ percentile travel time is nearly 24 minutes. So despite the longer travel time on average in the peak (i.e. nearly double the free flow travel time), the buffer time is just overfour minutes. In other words, the variation between the average and $95^{\text {th }}$ percentile travel times is smaller and therefore, this road can be viewed as reliably slower. This may be perceived by drivers as more desirably than unreliably slower, since they can more accurately predict their travel time.

Since this a nalysis was conducted for the first time in 2016, these results can be used as a baseline in future monitoring studies. In 2018, comparisons of relia bility between cyc les will be possible.

7.1.4 | Most/ Least Reliable Segments

This section highlights the most reliable and least reliable freeway segments in Ala meda County using the Buffer Index (BTI) as the primary metric (See Table 7-2 and Table 7-3). The most reliable segments tend to be those which are less congested, but as discussed in the previous
section, this is not alwa ys true as a severely congested segment may a lso be reliable if it is consistently congested. Reliability can be improved through improvements other than reducing traffic demand, such as:

- Operational improvements: ada ptive ramp metering, dyna mic pricing, adjustments to freeway service patrols, variable speed limits and lane control systems; and
- Geometric improvements: Accessible shoulders, emergency crossovers, improvements to detour routes, a nd vehic le tumouts.

Table 7-2: Most Reliable Freeway Segments (2016)

Reliability Segment ID	Peak Period	Description	length (mi)	PII	BII
N20	PM	I-680 - SB from C ontra C osta County Line to I-580	1.9	1.0	0.1
N16	AM	I-580 - WB from I-80 to Contra Costa County Lne	0.9	1.1	0.1
N12	AM	I-580-EB from SR 13 to I-238	7.9	1.0	0.1
N23	AM	I-880 - NB from Santa Clara County Line to SR 84/ Dec oto Rd.	10.1	1.1	0.1
N17	AM	I-680 - NB from Santa Clara County Line to SR 238 (Mission Blvd.)	6.3	1.1	0.1
N21	PM	I-680-SB from I-580 to SR 238 (Mission Blvd.)	13.1	1.1	0.1
N19	PM	I-680 - NB from I-580 to Contra Costa County Line	1.9	1.1	0.1
N11	AM	I-580-EB from I-80 to SR 13	7.5	1.1	0.1
N30	AM	I-980 - EB from I-880 to I-580	2.4	1.1	0.1
N12	PM	I-580-EB from SR 13 to I-238	7.9	1.2	0.1

Table 7-3: Least Reliable Freeway Segments (2016)

Reliability Segment ID	Peak Period		Length (mi)	Pli	BII
N15	PM	I-580 - EB from C ontra Costa C ounty Line to I-80	0.7	3.0	1.2
N3	PM	I-80 - WB from C ontra C osta County Line to Toll Plaza	6.0	4.6	1.1
N19	AM	I-680 - NB from I-580 to Contra Costa County Line	1.9	3.2	0.9
N4	PM	I-80 - WB from Toll Plaza to SF County Line	5.3	4.3	0.8
N6	AM	I-238 - WB from I-580 to I-880	2.5	5.5	0.8
N5	AM	I-238 - EB from I-880 to I-580	2.6	2.5	0.8
N31	AM	SR 13 - NB from I-580 to SR 24	5.8	3.3	0.8
N30	PM	I-980 - EB from I-880 to I-580	2.4	2.7	0.8
N7	PM	I-580 - EB from I-238 to I-680	10.4	2.9	0.7
N13	AM	I-580 - WB from I-238 to SR 13	7.9	3.3	0.7

7.2 | Duration of Congestion

The duration of congestion commonly inc reases when roadways become more congested resulting in peak spreading and nullifying the old concept of the "rush hour." There is an upper limit to capacity of a roadway and asthe demand increasesbeyond this, the peak period must extend in duration in order to serve the demand.

The duration of congestion is a performance measure that adds a nother dimension to assessing congestion levels. For example, two separate freeways could experience similar magnitudes of congestion during the peak period, however, one of the freewayscould be congested for four hours and the other for just one hour. So while the LOS could be similarat the peak, travelers can more easily shift their commute time to a void congestion on the second freeway. In such cases, the second freeway may be perceived asoverall less congested during a specific time period.

The duration of congestion was calculated as the average length of time perday in which speedsfell below 30 mph between the hours of 4 a.m. and 10 p.m. For example, if the speed falls below 30 mph for 60 minutes on Day 1 and 50 minutes on Day 2 , then the average duration of congestion is 55 minutes. The 30 mph threshold for this a nalysis is equivalent to the threshold forLOSF conditions on freeways based on the 1985 HCM shown in Table 2-3. This a nalysis is conducted foreach freeway CMP segment. The benefits of this a nalysis are a sollows:

- While a traditional LOS a nalysis would have just shown LOSF, this a na lysis differentiates this segment from others at LOSF by showing how long it is congested. Thus it is conceivable to conclude that a segment that experiences LOSF for one hour is better than a nother segment that experiences LOSF for four hours.
- The time value is also tangible and understandable to constituents and the public, whereas total vehicle-hours of delay (i.e. values in the thousands) is often diffic ult to perceive.

Table 7-4 shows the Top 10 longest congested CMP segments a nd their corresponding LOS in both the moming and aftemoon peak periods (from Chapter 3 |). Many of these segments were on I-80 westbound in Emeryville and Berkeley, with one having congestion lasting 442 minutes
(i.e. over 7 hours perday). Four of these segments experienced signific ant congestion (i.e. LOSF) a cross both peak periods. A further four segments experienced LOSF in one peak period and then LOSD or E conditions in the other peak. Two of the Top 10 segments experienced LOSF in one peak period and then uncongested conditions in the other peak period indicating that there is a long period of congestion in the aftemoon peak. One such segment was on the I-680 northbound from Vargas Road to Andrade Road with 270 minutes (i.e. 4.5 hours) of congestion daily most likely attributed to commuters retuming from Silic on Valley. This is an example of the congestion spreading beyond the two hour peak period window allocated formonitoring the LOS in Chapter $3 \mid$, and where the duration of congestion performance measure can more completely describe the roadway performance experienced by commuters. A complete listing of the duration of congestion for all freeway segments is provided in Appendix H .

Table 7-4: Top 10 Segments Impacted by Congestion for the Longest Duration per Day (2016)

Rank	CMP	Description	Length (mi)	Duration of Congestion (Avg. mins perday) ${ }^{1}$	LOS AM / LOS PM
1	F11	I-80-WB from Ashby Ave. to Powell St.	0.7	442	(F30) / (F20)
2	F10	I-80 - WB from University Ave. to Ashby Ave.	1.3	394	(F30) / (F20)
3	F9	I-80-WB from J ct l-580 to University Ave.	1.5	310	(F20) / E
4	F14	I-80-WB from Toll Pla za to SF C ounty	2.0	291	(F30) / E
5	F56	I-580-WB from SR 24 On-ramp to I-80/580 Split	1.2	289	(F30) / (F30)
6	F13	I-80-WB from I-580 Split to Toll Plaza	1.3	286	(F10) / E
7	F12	I-80 - WB from Powell to I-80/l-580 (Split)	0.5	276	(F30) / (F30)
8	F64	I-680-NB from Vargas Rd. to Andrade Rd.	2.2	270	A / (F20)
9	F61	I-680-NB from Durham Rd. to Washington Blvd.	1.3	262	A / (F10)
10	F91	I-880-NB from Alvarado-Niles to Tennyson Rd.	2.6	253	D / (F20)

[^2]
[^0]: 15 SHRP2 LO8: Proposed Chapters for Incorporating Travel Time Reliability into the Highway Capacity Manual. Transportation Research Board of the National Academies, Wa shington D.C. 2013.

[^1]: ${ }^{16}$ Travel Time Relia bility: Making it there on time, All the time. Federal Highway Administration. 2005. http://ops.fhwa.dot.gov/public ations/tt relia bility/TTR_Report.htm
 ${ }^{17}$ Technical Memorandum: Analysis Procedures and Mobility Performance Measures - 100 Most Congested Texas Road Sections. Texas A\&M Transportation Institute. 2014.

[^2]: ${ }^{\text {1. }}$ Includes times between 4:00 a.m. and 10 p.m. covering both the moming and aftemoon peak periods.

